Holocene shifts in the assembly of plant and animal communities implicate human impacts

Identifier

Title

Holocene shifts in the assembly of plant and animal communities implicate human impacts

Description

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change1. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance2, 3. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size4, 5 and the spread of agriculture in North America6, 7. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.

Source

Nature 529, 7584, 80–83

Publisher

Nature 529, 7584, 80–83

Date

07 January 2016

Format

PDF

Language

Item Relations

This item has no relations.

Files

nature16447.pdf

Citation

S. Kathleen Lyons, Kathryn L. Amatangelo, Anna K. Behrensmeyer, Antoine Bercovici, Jessica L. Blois, Matt Davis, William A. DiMichele, Andrew Du, Jussi T. Eronen, J. Tyler Faith, Gary R. Graves, Nathan Jud, Conrad Labandeira, Cindy V. Looy, Brian McGill, Joshua H. Miller, David Patterson, Silvia Pineda-Munoz, Richard Potts, Brett Riddle, Rebecca Terry, Anikó Tóth, Werner Ulrich, Amelia Villaseñor, Scott Wing, Heidi Anderson, John Anderson, Donald Waller & Nicholas J. Gotelli , “Holocene shifts in the assembly of plant and animal communities implicate human impacts,” Uwekind Resource Centre, accessed December 7, 2024, http://library.uwekind.com/items/show/451.